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Abstract 

One of the key problems in the area of automatic synthesis of real-time 

concurrent control programs is a problem of automated modeling of systems 

comprising multiple activities or processes that proceed concurrently. In that 

context, the discrete-event systems framework enabling to predict the modeled 

objects performance and then to design of assumed quality control program 

on the basis of the given specification of the processes controlled, plays a crucial 

role. From that point of view, the Petri nets can be seen as a most widely 

recognized tool aimed at modeling system’s concurrency. So, the main objective 

of our contribution is to illustrate the Petri nets based approach from both: 

IF…THEN… rules system’s behavior specification and its Turing machine like 

representation points of view. 

 

 

1. INTRODUCTION 
 

Predicting the performance of a computer, manufacturing, telecommunication, workflow, 

or transportation system is of primary importance in many day-life situations. Such systems 

usually comprise multiple activities or processes that proceed concurrently. In that context, 

as a modeling framework a class of discrete-event systems (DESs) [4,6,8] that can be viewed 

as making state transitions when events associated with the occupied state occur is usually 

applied. Among the possible DEDs representations the Petri nets [1,2,5,7] can be seen 

as a most widely recognized tool aimed at modeling system’s concurrency. 

A key problem arising in concurrent processes control regards of the resources conflict 

resolution. Such problems often arise in the systems where concurrently flowing processes 

compete with an access to common shared resources. Any two sequential processes where 

it is not possible to tell in advance which operations of one of them are preceded by the 

operations of the anther processes are treated as concurrent ones. 

Among the examples of systems where concurrent processes dominate are: 

 Operating systems supervising processes competing with an access to the resources 

of the computer system, e.g. CPU time, memories, peripheral devices, etc. 
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 Transmission communication networks, where broadcastings processes along routes 

containing specific network compete with an access to its resources, e.g. buffers, 

nodes, etc.  

 Production systems, where concurrently flowing energy, money, material and 

information processes involved in simultaneous manufacturing of different products 

compete with an access to its resources, e.g. machine tools, robots, conveyors, 

storages, IT equipment, etc. 

 

The general goal of these systems is executing certain tasks (concurrent processes), which 

must gain to a specific number of units of appropriate resources.  

 

Executing process operations requires allocating to them specific and necessary for their 

completion, system resources. In most cases, however, the amount of available system 

resources is smaller than the amount of resources utilized by the processes executed. This 

situation results in processes competition, i.e. a resource conflicts occurrence. Consequently, 

it is necessary to synchronize processes activity as to supervise processes execution, aimed at: 

 resources conflicts resolution guaranteeing deadlock-free and starvation-free processes 

execution, 

 optimization of the rate of system resources utilization, ensuring efficient operation 

of the system while maximal processes concurrency 

 

In order to illustrate synchronization issues and techniques for resolving they let 

us consider the dining philosophers problem.  

 

 

The dining philosophers. At a round table sit five philosophers who alternate between 

thinking and eating from a large bowl of spaghetti at random intervals. Each philosopher must 

alternately think and eat. Eating is not limited by the amount of spaghetti left: assume 

an infinite supply. Unfortunately for the philosophers, there are only five forks at the table, one 

left and one right of each seat. (see Fig. 1). For eating each philosopher (the process) needs two 

forks (the resources). When a philosopher cannot grab both forks it sits and waits. Since the 

chopsticks are shared between the philosophers, access to the chopsticks must be protected, but 

if care isn't taken, concurrency problems arise. Most notably, starvation (pun intended) and 

deadlock (seen as a situation in which no progress is possible) can occur, i.e. if each 

philosopher picks up a chopstick as soon as it is available and waits indefinitely for the other, 

eventually they will all end up holding only one chopstick with no chance of acquiring another 

(see Fig. 1). There exist two deadlock states when all five philosophers are sitting at the table 

holding one for each. One deadlock state is when each philosopher has grabbed the fork left 

of him, and another is when each has the fork on his right.  
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Fig. 1. The dining philosophers  

 

 

So, assuming that a philosopher can only eat while holding both the fork to the left and the 

fork to the right, and can pick up an adjacent fork, when available, and put it down, when 

holding it (forks must be picked up and put down one by one) the main problem is how 

to design a discipline of behavior (e.g., seen as a concurrent algorithm implementing a proper 

synchronization mechanism) such that each philosopher won't starve, i.e. can forever continue 

to alternate between eating and thinking, while avoiding deadlock  namely, the state in which 

each philosopher has picked up the fork to the left, waiting for the fork to the right to be put 

down. 

 

Solution to this problem is a synchronization protocol guaranteeing required system 

behavior. An example of possible solution is shown in Fig. 2, where an order of the five 

snapshot-like cases specifies the protocol guaranteeing pleasant, i.e., starvation and deadlock 

free, consumption.  Of course, in general case one may design may many others, for instance 

less fair, protocols. 

Five philosophers and five forks 

Starvation Deadlock 
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Fig. 2.  Illustration of a synchronization protocol 

 

To summarize, let us note that the failures these philosophers may experience are analogous 

to the difficulties that arise in real life, e.g. computer programming when multiple programs 

need exclusive access to shared resources. In this case the difficulties studied in the Dining 

Philosophers problem arise when multiple processes access sets of data that are being updated. 

Deadlock handing. Let us consider a class of systems consisting of some sets of non-

preemptive (i.e., for which an operation once started cannot be suspended until its completion) 

and reusable resources (a synchronization protocol (i.e., which are returned to the system after 

having been used by a process). I a synchronization protocol is assumed that: 

 the number of units of each resource kind is finite and constant, 

 a resource unit can be released (made again available to other processes) only by the 

process to which it was allocated. 

The system resource utilization by correctly constructed processes determines the following order: 

 Request; recording of the resource allocation request 

 Use; allocating the resource 

 Release: release of the resource. 

Legend: 

- the dining philosopher - the thinking philosopher 

Step 1 

Step 2 

Step 3 

Step 4 Step 5 
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As previously mentioned, non-preemptivness of the resources causes resource conflicts 

related to the fact that any given resource unit can be used by only one process at a time. Such 

a resource (in general a set of resources) is a critical section and all processes requesting that 

resource compete for access to it. The problem of mutually excluding processes related to the 

presence of critical sections results in the non-continuous operation of processes because they 

must at times wait for access to the resource which is the critical section. 

Analyzing processes cooperation leads to the conclusion that mutual process blocking 

(deadlock) occurs when both processes gain access to the critical section consisting of the 

resources T and S. In such a state process p1 using resource T is waiting for the release of the 

resource S which is used by process p2. In turn, process p2¬ using resource S is waiting for the 

resource each resource each resource T each resource which is used by process p1 (see Fig. 3). 

 
 

Fig. 3. An example of two processes cooperation while accessing the critical section containing 

two resources T and S. 
 

One should note, however that processes description implies only a potential for blocking 

which actual occurrence depends on the relative speed of processes.  

That was shown [1] a deadlock can arise only when the following four conditions are 

simultaneously satisfied: 

  Mutual exclusion; at any given moment only one process can use a given resource, 

  Non-preemption, a resource can be release only by the process which first took 

possession of it, 

  Hold-while-waiting; while waiting for resources to be released by other processes 

a process does not release the resources allocated to him, 

  Circular wait; there exists a closed cyclic chain of processes waiting for release 

of resources possessed by other processes. 

Process  

  resource request 

  resource utilization 

  resource request 

  resource utilization 

Process  

  resource request 

  resource utilization 

  resource request 

  resource utilization 

Release of   and     Release of   and     
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That means, that in order to prevent blocking in the system it suffices to ensure that at least 

one of the above mentioned conditions will never hold. From this observation, the following 

problem aimed at deadlock handling can be stated. 

 

Deadlock prevention 

Protocols specifying such ways of resources requesting which make it impossible to satisfy 

one of the conditions necessary for blocking are sought. 

 

Deadlock avoidance 

A way of using the system resources by each process and allowing such selection 

of resource requests which ensure the system transition from one safe state to another is sought. 

 

Deadlock detection and recovery 

A ways allowing determining which processes and resources cause deadlock, and removing 

it by successive reallocating of resource units from the blocked processes and checking 

whether that helps to recover the blocking. 

 

 

2. MODELLING OF COMPETING PROCESSES INTERACTION 
 

The Petri net view of a system concentrates on two concepts, namely, transitions and 

conditions. Transitions are actions which take place in the system, and the occurrence of these 

transitions is controlled by the state of the system. The state of the system may be described 

as a set of conditions. A condition is a logical description of the state of the system. 

For a transition to occur, it may be necessary for certain conditions to hold and these are 

termed the preconditions of the transition. The occurrence of the transition may cause the 

precondition to case to hold and may cause other conditions, called postconditions, to be true. 

A Petri net needs four entities for description: Places, Transitions, Inputs and Outputs. 

Places are used to represent conditions and transitions are used to represent events. The inputs 

are mappings from transitions to places and the outputs are mappings from places 

to transitions. 

Markings are used in Petri nets to assign tokens to places. Tokens move through a Petri net 

and are used to define the execution of the Petri net. A Petri net executes by firing transitions. 

A transition is fired by removing tokens from its input places and creating new tokens in the 

output places. The removal/creation of tokens is controlled by the input/output functions of the 

Petri net. The firing of a transition is through enablement. A transition is enabled if there is a 

token in all the places specified by the output function mapping for the transition. Fig. 4 

illustrates above defined entities and the firing of a transition. 

The modeling of a system requires the determination of the various events and conditions 

which will occur and the relationships between the various events and conditions. These are, 

respectively, transitions, places and input/output mappings. In the system model it is apparent 

that events can be enabled simultaneously, hence concurrent systems can be modeled.  

For illustration consider a flexible manufacturing cell shown in Fig. 5. 
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Fig. 4. An example of the Petri net; state before a), and after b) firing. 

 

 
 

Fig. 5. The flexible manufacturing cell 

 

During the technological process in the cell considered, a workpiece waiting on conveyor 

Tr1 is picked up by robot R and placed on conveyor Tr2. Then the workpiece is carried by Tr2 

to the machine M, where its machining is performed. After completion of the operation 

workpiece is placed by  M on Tr2  that moves it to the position from which it is taken by robot 

R and placed on conveyor Tr3. 

It is assumed that there is always a workpiece waiting for machining on conveyor Tr1 and 

that Tr3 is always ready to accept the consequent completed part. However, Tr2 can contain 

only one part at a time and its performance (move to/from the machine tool) is determined by 

the existence of a workpiece waiting for machining or to be already completed one. The 

machine tool starts its operation as soon as a part appears on it. Robot R starts one of the 

transportation operations (from Tr1 to Tr2 or from Tr2 to Tr3) immediately after it has 

completed a previous one and providing the existence of a part waiting for transport 

 

M 

 

 

 

Legend: 

– the -th conveyor,  – the machine tool,  –  the industrial robot, 

 

– the -th place,  – the transition, 

    

          

Legend: 

 – the marking, where , , , 

, and , 
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is signaled. The task considered consists in the development of a procedure for the cell 

components control that allows the execution of the technological process given. 

Let us assume that the manner of system operation can be specified by a given set 

of production rules: 

 

:  IF    on    AND  exempt      THEN  on  
 

:  IF   on       AND   exempt    THEN   on   AND   exempt 
 

:  IF   on     AND   exempt      THEN   on     AND   exempt 
 

:  IF on       AND   exempt    THEN   on   AND   exempt 
 

:  IF   on     AND   exempt      THEN   on     AND   exempt 
 

:  IF   on R      AND    exempt   THEN   exempt  
 

where: "s" and "w" denote the workpiece awaiting for machining and workpiece already 

completed. 

The conditions put in a frame are always fulfilled (according to what has been assumed 

earlier). The letter notations a – h are abbreviations stating for the conditions considered. 

Employing these notations and omitting the conditions always fulfilled (i.e., given in the 

frames), the set of production rules can be formulated as follows: 

 

R_1:  IF a THEN b, 

R_2:  IF b AND c THEN d AND a, 

R_3:  IF d AND e THEN f AND c,      (1) 

R_4:  IF f AND c THEN g AND e, 

R_5:  IF g AND a THEN h AND c, 

R_6:  IF h THEN a. 

 

The problem specification given above allows employing a Petri net model. An idea 

standing behind of the modeling concept assumes that each rule of the form (2) can be 

represented by a net shown in Fig. 6. 
 

:  IF  AND  AND ... AND  THEN  AND ... AND                (2) 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The Petri net model of the rule Ri (2). 
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Taking into account possible graphical representation of the IF…THEN… rule the resultant 

Petri net model of the control procedure sought can be designed (see Fig. 7). 

 

Fig. 7. The net model of the control procedure sought 

 

The initial marking assumed in the Petri net model from Fig. 7 corresponds to the situation 

in which all the system resources are exempted (see the tokens in the places corresponding 

to particular resources), hence no technological operation is being executed. It should also 

be noted that such a state implies that the conditions “a”, “c” and “e” are fulfilled. The 

transitions tR1, tR2, tR3, tR4, tR5, tR6  correspond to IF…THEN… rules specifying the considered 

events. 

The performance evaluation. The model obtained can be used then for analysis of the 

modeled cell functioning. A typical technique for such evaluation is a analysis of a reachability 

graph (or reachability tree). The reachability graph is a finite representation of a reachability 

set, i.e. the set containing the all markings reachable from the initial marking M0. The nodes 

represent markings of the Petri net and the arcs represent the possible changes in the state 

resulting from the firing of transitions. Inspection of the graph will indicate, for instance, for 

a given marking M, if marking M’ is reachable from M. 

The reachability graph constructed for the model given in Fig. 7 is presented in Fig. 8. 

Results of analysis conducted show that the modeled behavior does not fulfill the requirements 

assumed, i.e. concerning the deadlock-free execution of production process. In other words, 

     

 

 

 

      

, ,  – places modeling conditions encompassing the resources state, i.e., the 

robot , the conveyor , the machine tool , respectively 

, ( ), , ( ), – places modeling conditions encompassing the workpiece 

state, i.e., transported by robot  from to  (from  to ), transported 

by Tr2 to (from) machine , machined on , respectively, 

, , , , ,  – transitions modeling events encompassing actions 

corresponding to the workpiece picking up from  and caring to , the 

workpiece placing on  and caring by  to , the workpiece placing to  

and machining beginning, the workpiece releasing and placing on , the 

workpiece picking up from  and caring to , the workpiece placing on , 

respectively. 

 

Legend: 

     

 

 

 

      

, ,  – places modeling conditions encompassing the resources state, i.e., the 

robot , the conveyor , the machine tool , respectively 

, ( ), , ( ), – places modeling conditions encompassing the workpiece 

state, i.e., transported by robot  from to  (from  to ), transported 

by Tr2 to (from) machine , machined on , respectively, 

, , , , ,  – transitions modeling events encompassing actions 

corresponding to the workpiece picking up from  and caring to , the 

workpiece placing on  and caring by  to , the workpiece placing to  

and machining beginning, the workpiece releasing and placing on , the 

workpiece picking up from  and caring to , the workpiece placing on , 

respectively. 

 

Legend: 
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it means that the control procedure mapping the behavior of this model can lead to the process 

deadlock. 

 

 
 

Fig. 8. Reachability graph of the Petri net model from Fig. 7 

 

An example of such situation is the state that corresponds to the marking  

 
             

 

in which a completed workpiece is waiting on Tr2 for the robot R, while the next 

workpiece, picked up from Tr1 and being kept by R, is waiting for Tr1 to be released. So, the 

set of admissible states is that included in the area restricted by dashed line in Fig. 8. 

The analysis of the reachability graph allows the model modification aimed at the 

development of such its version whose behavior would be represented only by feasible 

executions of the modeled process. In the example considered, it results from the graph 

analysis that the version modified should provide tR1 not to be enabled at any marking M  such 

that M(pa) = 1 and M(pc) =1 as well as at marking M’ such that M’(pa) = 0 and M’(pc) =1. 

It should be noted that the problem specification manner presented is of heuristic nature 

and, in general case, it can lead to the construction of inadequate models, which do not allow 

the analysis of the system functioning. This implies the necessity of multiple problem 
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specifications and evaluation of the net models in a trial-and-error way. So, once again we have 

to emphasize our conclusion: “a problem is as much hard as much its model is sophisticated”. 

This observation support many different, available models following the Petri nets concept. 

So, besides fundamental classes of nets theory such as Condition/Event systems and 

Place/Transition systems, their subclasses, e.g. State Machines, Marked Graphs, Free-Choice 

nets, or their extensions, e.g. Inhibitor Petri nets, Predicate/Transition Petri nets, Timed Petri 

nets, Colored Petri nets, Stochastic Petri nets and so on, can be employed as a modeling tool. 

However, that is a matter of a compromise observed between the modeling power and decision 

power of the modeling framework. 

It can be noted that extending the Petri net model usually increases the modeling power, 

however it may decrease their decision power. Also the subclasses of Petri nets might have 

good decision properties, however their modeling power may be decreased. So, an impact 

of any net model extension on its decision power must be recognized and evaluated from the 

specific of problem considered.  

 

 

3. THE TURING MACHINE PERSPECTIVE 
 

Talking about Turing machine let us recall the statement: Any algorithm can be expressed 

in terms of the relevant Turing machine. In order to show it let us return once again to the Petri 

net model shown in Fig. 7 The behavior of the modeled manufacturing cell has been 

encompassed by reachability digraph shown in Fig 8. 

The same behavior can be encoded in the Turing machine shown in Table 1. The markings 

placed in the first column named States belong to so called reachability set of Petri net model 

considered. Other potentially possible markings are not included because they cannot enable 

any transition from considered set.  The rest of markings are obtained due to the following state 

transition rule: 

IF “the transition tRi is enabled at the initial marking Mj” THEN “the value of successive 

marking follows the production rule Ri"” ELSE “the value of successive marking equals to the 

initial one”. 

 

Table 1. Turing machine encompassing the behavior of the Petri net model from Fig. 7 

    Transitions     

 

States M 
tR1 tR2 tR3 tR4 tR5 tR6 

0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,0,1,1,1 

0,0,0,1,0,1,0,1 1,0,0,1,0,0,0,1 0,0,0,1,0,1,0,1 0,0,0,1,0,1,0,1 0,0,0,1,0,1,0,1 0,0,0,0,1,0,1,1 0,0,0,1,0,1,0,1 

0,0,1,0,0,1,1,0 1,0,1,0,0,0,1,0 0,0,1,0,0,1,1,0 0,0,1,0,0,1,1,0 0,0,0,1,0,1,0,1 0,0,1,0,0,1,1,0 0,0,1,0,0,1,1,0 

0,0,0,0,0,1,1,1 1,0,0,0,0,0,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 

1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 0,1,0,0,0,1,0,1 1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 

0,1,0,0,0,1,0,1 1,1,0,0,0,0,0,1 1,0,0,0,0,0,1,1 0,0,1,0,0,1,1,0 0,1,0,0,0,1,0,1 0,1,0,0,0,1,0,1 0,1,0,0,0,1,0,1 

1,1,0,0,0,0,0,1 1,1,0,0,0,0,0,1 1,1,0,0,0,0,0,1 1,0,1,0,0,0,1,0 1,0,0,1,0,0,0,1 1,1,0,0,0,0,0,1 1,1,0,0,0,0,0,1 

1,0,1,0,0,0,1,0 1,0,1,0,0,0,1,0 0,1,1,0,0,1,0,0 1,0,1,0,0,0,1,0 1,0,1,0,0,0,1,0 1,0,1,0,0,0,1,0 1,0,1,0,0,0,1,0 

0,1,1,0,0,1,0,0 1,1,1,0,0,0,0,0 0,1,1,0,0,1,0,0 0,1,1,0,0,1,0,0 0,1,1,0,0,1,0,0 0,1,1,0,0,1,0,0 0,1,1,0,0,1,0,0 

 



18 

By the grey shade the successive markings leading to the deadlock are distinguished. Underlined 

states are the deadlock ones, and then by the bold figures the admissible successive markings are 

distinguished. The rest of the next state markings are the same as initiating those ones. 

Let us remind you also, that the problem we were faced with in the example considered was 

to find out the control procedure guaranteeing the asynchronously acting components of the 

manufacturing cell will be supervised in a way guaranteeing its deadlock and starvation free 

functioning. In broader sense, this issue regards the methods aimed at automatic synthesis 

of real-time concurrent control programs, i.e., methods that enable the synthesis of assumed 

quality control program on the basis of the given specification of the processes controlled. 

So, since the Petri net model of such procedure does not guarantee the required functioning, 

hence its correction aimed at preserving of the assumed quality behavior has to be adjusted.  

For illustration of the possible solutions let us consider two cases: in the first one the model 

modification regards of its structure correction, and in the second one a new model created on 

the base of extended Petri nets is created.  

In the first case shown in Fig. 9 a control place pad is added. 

 
Fig. 9 Modified Petri net model of deadlock-free control procedure. 

 

The reachability set of the new Petri net model does not contain any deadlock marking. The 

relevant Turing machine is specified by Table 2 , where markings are defined as follows:  

        

 
 

Table 2. Turing machine encompassing the behavior of the Petri net model from Fig. 9. 

     Transitions 
 

States M 
tR1 tR2 tR3 tR4 tR5 tR6 

0,0,0,0,1,0,1,1,1 0,0,0,0,1,0,1,1,1 0,0,0,0,1,0,1,1,1 0,0,0,0,1,0,1,1,1 0,0,0,0,1,0,1,1,1 0,0,0,0,1,0,1,1,1 0,0,0,0,0,1,1,1,0 

0,0,0,1,0,1,0,1,1 0,0,0,1,0,1,0,1,1 0,0,0,1,0,1,0,1,1 0,0,0,1,0,1,0,1,1 0,0,0,1,0,1,0,1,1 0,0,0,0,1,0,1,1,1 0,0,0,1,0,1,0,1,1 

0,0,1,0,0,1,1,0,1 0,0,1,0,0,1,1,0,1 0,0,1,0,0,1,1,0,1 0,0,1,0,0,1,1,0,1 0,0,0,1,0,1,0,1,1 0,0,1,0,0,1,1,0,1 0,0,1,0,0,1,1,0,1 

0,0,0,0,0,1,1,1,0 1,0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1,0 0,0,0,0,0,1,1,1,0 0,0,0,0,0,1,1,1,0 0,0,0,0,0,1,1,1,0 0,0,0,0,0,1,1,1,0 

1,0,0,0,0,0,1,1,1 1,0,0,0,0,0,1,1,1 0,1,0,0,0,1,0,1,1 1,0,0,0,0,0,1,1,1 1,0,0,0,0,0,1,1,1 1,0,0,0,0,0,1,1,1 1,0,0,0,0,0,1,1,1 

0,1,0,0,0,1,0,1,1 0,1,0,0,0,1,0,1,1 0,1,0,0,0,1,0,1,1 0,0,1,0,0,1,1,0,1 0,1,0,0,0,1,0,1,1 0,1,0,0,0,1,0,1,1 0,1,0,0,0,1,0,1,1 
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By the gray shade the admissible successive states are distinguished. The rest of the 

successive markings are the same as initiating those ones. 

In the second case an extended Petri net with inhibitor arcs is used. The firing rule applied 

in this kind of nets enables a transition to fire when it is enabled according to the earlier 

mentioned firing rule and simultaneously if the input places linked to the transition by inhibitor 

arcs have no tokens. The relevant solution is shown in Fig. 10. 

 

Legend: 

- inhibitor arcs constraining the transition firing in case at least one of them 

is linked with the marked place    

 

Fig. 10. Petri net with inhibitor arcs model of deadlock-free control procedure. 

 

The reachability set of the new Petri net model does not contain any deadlock marking. The 

relevant Turing machine is specified by Table 3 

 

Table 3. Turing machine encompassing the behavior of the Petri net model from Fig. 10 

 
       Transitions      

 

States M 
tR1 tR2 tR3 tR4 tR5 tR6 

0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,1,0,1,1 0,0,0,0,0,1,1,1 

0,0,0,1,0,1,0,1 0,0,0,1,0,1,0,1 0,0,0,1,0,1,0,1 0,0,0,1,0,1,0,1 0,0,0,1,0,1,0,1 0,0,0,0,1,0,1,1 0,0,0,1,0,1,0,1 

0,0,1,0,0,1,1,0 0,0,1,0,0,1,1,0 0,0,1,0,0,1,1,0 0,0,1,0,0,1,1,0 0,0,0,1,0,1,0,1 0,0,1,0,0,1,1,0 0,0,1,0,0,1,1,0 

0,0,0,0,0,1,1,1 1,0,0,0,0,0,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 0,0,0,0,0,1,1,1 

1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 0,1,0,0,0,1,0,1 1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 1,0,0,0,0,0,1,1 

0,1,0,0,0,1,0,1 0,1,0,0,0,1,0,1 0,1,0,0,0,1,0,1 0,0,1,0,0,1,1,0 0,1,0,0,0,1,0,1 0,1,0,0,0,1,0,1 0,1,0,0,0,1,0,1 

 

The succeeding markings are obtained due to the following state transition rule: 

IF “the transition  is enabled at the initial marking and for every inhibitor arcs 

 the following condition holds ” THEN “the value of successive 

marking follows the production rule ” ELSE “the value of successive marking equals to the 

initial one”. 
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Note that this solution provides the same set of reachable markings in cost of more complex 

rule for transition firing, while taking advantage in smaller set of places. So, the basic model 

modification itself is connected with difficulties arising from the complexity of the reachability 

graph analysis and the heuristic character of the available techniques for its modification. 

Simply speaking that means the problem of automatic programming still belongs to the open 

ones. 

 

 

4. CONCLUSIONS 
 

The supervisory control of large-scale compound discrete event systems involves 

computations on state spaces which grow exponentially with the number of system 

components. Programming languages allowing describing parallel processes are widely used 

nowadays, especially many general purpose and task oriented Petri net-based packages, e.g. for 

the specification and verification of concurrent control problems, have been developed so far. 

However problems of analysis and verification of models of concurrently flowing processes are 

far from being solved satisfactorily [1,4].  

Therefore, although the cases have been discusses were simplified in scope, they provide an 

insight into the needs for methods aimed at real-time concurrent control programming, i.e. 

guaranteeing formal verification of designed control procedure while reducing state space 

generation/searching efforts. 
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